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ABSTRACT

The appropriate choice of sensing and how to obtain the de-
sired state information from available sensing for feedbac
learning process are essential for most control schemetydn
ing iterative learning control (ILC), to achieve their permance
objective. In the multi-joint robots with joint elasticitshe load
side joint space measurements are usually not availablen ev
though the load side (end-effector) performance is of aiten
interest. This is termed as mismatched sensing problem: Fur
thermore, the mismatched uncertainty and mismatchedtiea!-
feedback signals in the robots with joint elasticity settier dif-
ficulty in achieving high performance. In this paper, a hybri
two-stage model based iterative learning control (ILC)etie is
proposed to deal with the mismatched dynamics. Also, tdeack
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kinds of iterative learning control (ILC) schemes, one & #3-
sential factors for the algorithms to work effectively isdiaoose
and obtain the appropriate error information for the leagrpro-
cess.

For the robots with joint compliance, the load side (end-
effector) performance is of the ultimate interest, whichn ca
hardly be guaranteed with motor side information alone [3, 4
Some early work [5, 6] on this topic only considered the sin-
gle joint case or assumed availability of load side joint muga-
ments. In industrial robots, however, the load side joirtoelers
are usually not available due to the cost and assembly is$oes
overcome this mismatched sensing problem, a low-cost MEMS
accelerometer can be easily adopted to measure the erdoseffe
vibration [7]. This provides the possibility of designingrtrol

the mismatched sensing issue, a sensor fusion scheme Is deve schemes to directly address the end-effector performance.

oped. An optimization based inverse differential kineosadil-
gorithm and decoupled adaptive kinematic Kalman filter (KKF
are integrated to obtain load side joint space informatioom
the insufficient end-effector measurements. The propd<ed |
scheme together with the load side state estimation alyoris
validated through the experimental study on a 6-DOF indaktr
robot.

INTRODUCTION

In industrial applications, robot manipulators are often r
quired to repeatedly perform a single task. If the robot a¢gpe
bility is good, the trajectory tracking error will becomepstitive
from one run to another. In this case, a learning controlmehe
can be utilized to compensate for the repeatable trajettack-
ing errors [1, 2]. While many literatures have suggesteibuar
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In decentralized multi-axis robot control, which is tydlga
utilized in industrial robots, load side joint space infation is
preferred rather than the end-effector information. Thaufyr-
ther study of sensor fusion for joint information estimatis
necessary. In [8, 9], this problem was investigated utifizan
accelerometer (and a gyroscope) for each joint without gee u
of motor encoders. The achieved accuracy was acceptable for
service robots where positioning tolerance is at the ortimiilb
limeters. In [10, 11], the load side state estimation probleas
handled with extended Kalman filter (EKF) or particle filte)
utilizing both the motor encoders and end-effector acoaher-
ter. The computation load, however, was nontrivial due ® th
complex dynamic model and the EKF/PF algorithms. In [7], we
tackled the same problem using an optimization based iavers
differential kinematics algorithm and decoupled adapkiree-
matic Kalman filter (KKF) for each joint. The method is com-
putationally easy and will be utilized in this paper to pawi



desired load side state estimates.

Other difficulties due to the mismatched behaviors (includ-
ing dynamics and sensing) of the robots with joint elasticit
include: the disturbance affects the output in a differeayw
from the motor torque input, and the real-time feedbackagn
are normally from the motor side only instead of the load side
In [12], a model-based ILC approach was developed to learn
the error component beyond the first resonant frequency.-How
ever, this approach requires an accurate piecewise-lmedel
to be identified and interpolated for each trajectory in adea
which limits its application. In [13], we proposed a hybndot
stage model based ILC scheme, where the reference trajector
and the feedforward torque input were both iteratively upda
to achieve high bandwidth performance while maintaining-co
vergence property. This scheme will be applied in this paper
deal with the mismatched system dynamics in the robots with
joint elasticity.

This paper is organized as follows. The robot modeling and
control structure are described first, which is followed g $ys-
tematic design of the two-stage ILC scheme. A load side state
timation method is then introduced to retrieve the load gide
information from the measured Cartesian space accelarfio
implementation of the ILC scheme in the joint space. Findfig
experimental study of the proposed scheme is presented.

SYSTEM OVERVIEW

Consider am-joint robot with gear compliance. The robot
is equipped with motor side encoders to provide direct mea-
surements of motor side joint positions and velocities &al+
time feedback. In addition, a three-dimensional acceletem
is mounted at the robot end-effector to measure the endteffe
acceleration in Cartesian space. Note that, if the comgugn
source and the sensor configuration allow, the end-effeeior
sor can also be used online. This paper, however, will addres
the conservative case where the end-effector sensor isfffor o
line and training use only, which is usually preferred inustty
due to the cost saving and the limited real-time computation
power.

Robot Dynamic Model
Lagrangian Dynamics The dynamics of then-joint
robot with joint compliance can be formulated as [14]

M¢(qr)de +C(ar,4)qr + G(qr) + DeQr + Fresgn(ge) (1)
+37(0) fext = Ky (N"am—a¢) + Dy (N 2am— /)
Mm€im + Dm@m + FmeSgNGm) = Tm (2)

~N71[Ky (N"*gm—qr) + D3 (N 2m— /)]

whereq,gm € R" are the load side and the motor side posi-
tion vectors, respectivelyry, € R" is the motor torque vector.
M,(g;) € R™" is the load side inertia matriG(qy, g;) € R™"

is the Coriolis and centrifugal force matrix, a®@lqg,) € R" is
the gravity vectorMm, K3, D3, D/, Dm, Fre, Fme @andN € R™N
are all diagonal matrices. Tligi)-th elements of these matrices,
Mmi, K3i, Dai, Dyiy Dmi, Frei, Fmci, @ndN;, represent the motor side
inertia, joint stiffness, joint damping, load side dampintptor
side damping, load side Coulomb friction, motor side Coulom
friction, and gear ratio of theth joint, respectively. fex; € R®
denotes the external force acting on the robot due to cowititt
the environment. The matrik(q,) € R®" is the Jacobian ma-
trix mapping from the load side joint space to the end-effect
Cartesian space.

Decoupling Model Define the nominal load side in-
ertia matrix asM,, = diagMn1,Mn2,- -+ ,Mnn) € R™", where
Mni = Myjii (Qro), andMyji (dro) is the (i, i)-th element of the in-
ertia matrixM,(qgyo) at the home (or nominal) positiam. My
can be used to approximate the inertia maliixq,). The off-
diagonal entries d¥1,(q,) represent the coupling inertia between
the joints. Then, the robot dynamic model can be reformdlate
as follows

Mm@m+ DmGm = Tm — FmcS9M0m) (3a)
~N"*[Ky (N tom—0a¢) + Dy (N " m—0)]
Mni; + D@, = d'(q) (3b)

+K; (Nflqm — C]g) + Dy (N71Qm— CI/)

where all the coupling and nonlinear terms, such as Corio-
lis force, gravity, Coulomb frictions, and external forcese
grouped into a fictitious disturbance torquféq) € R" as

d’(q) = [MaM; *(ar) — In] [Ks (N~ *0m—q¢) + Dy (N~ 1om— )
— D] — MaM, (a) [C(a, Ge) e
+G(0) + Fresgn(de) + 3" (al) fexd] 4

whereq = [qf,, qﬂT andl, is ann x nidentity matrix.
Thus, the robot can be considered as a MIMO system with
2n inputs and 2 outputs as follows

(5a)
(5b)

Im(J) = Pmu(2)Tm(j) + Pma(2)d(j)
A (J) = Pu(2)Tm(j) + Pa(2)d(]

wherej is the time indexz is the one step time advance operator
in the discrete time domain, and the fictitious disturbamgeii
d(j) is defined as

[~ [Fmesg(@m(i))] ™ [da(iN"]" (6)
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Figure 1. Robot Control Structure with Reference & Torque Update

The continuous time transfer functions from the inputs & th
outputs for the-th joint can be derived from (3) as follows

Mni$® + (D3i + Dyi)s+ K

| _
Fnu(S)  MmiMnis® + JgiS® + Jis? + K3i(Dmi 4 Dy /N?)s
P}U(s) _ Djis+ Ky
: Ni [MmiMnis? + JgiS® + Jais? -+ Kai (Dmi + Dei/N?)s|
Djis+ Ky

mat (9) = Ni [MmiMnis* + Jgis® + Jis? + Kai(Dmi + Dyi /N2)s|
P (s = MmiS? + (Dgi/N? + Dmi)s+ Kyi/N?
4 MiniMnis? + Jgis® + Jkis? + Kyi(Dmi + Dri/N?)s
hd(S) = [Phu(9), Py (9], Plg(s) = [Py(S), Py (9)]

where the subscript/superscrigitenotes the joint index, and

Di

Jdi =Mmi(Dgi + Dyi) + Mni( 2
i

+ Dmi)

MniKsi

DjiDyi
N2

Ji =MmiKai + + (Dyi+ Dyi)Dmi+

Robot Controller Structure

It is seen that the robot dynamic model (3) is in a decou-
pled form since all the variables are expressed in the digon
matrix form or vector form. Therefore, the robot controléan
be implemented in a decentralized form for each individoialtj
Note that the MIMO linear system representation (5) is otedi
not through local linearization but by considering the fiotis
disturbancel as an input which includes the model uncertainties
and nonlinearities. The second component of the fictitiaas d
turbanced in (6) influences the output in a different way from
the motor torque inputy. Thus this robot system is regarded
as a MIMO mismatched dynamic system. The compensation of
this fictitious disturbance should be considered in the controller
design.

Figure 1 illustrates the control structure for this misrhait
system, where the subscrlpis the iteration index. It consists of
two feedforward controllerdr; andF, and one feedback con-
troller, C. Here,C can be any linear feedback controller such

as a decoupled PID controller to stabilize the system. Tad-fe
forward controllersF; andF,, are designed using the nominal
inverse model as

(7)
(8)

Omak(J) = Pnu(2P, (@ ax(i) 2 FL(2)da k(i)
Tink(§) = Pri(2) [Omak(J) + Tak(i)] = F2(2)0mak(j)

wheree’is the nominal model representationgfandey is the
desired output 0é. rq andty i are used as the additional refer-
ence and feedforward torque updates, which are generated it
tively by the two-stage ILC algorithm designed later, to gam-
sate for the effect of the fictitious disturbanteThe initializa-
tion of these two updates for the first experiment iteratiaa,(
initial run) is designed as

rq0 = NK3 (Tg — Mntira — Detlrg) 9
Tnio = T££,0 — Tino (10)
where
Trg = My (Qra)Ged +C(Ard, Gea)Gra + G(Ara) + Dl
+ Fresgn(@a) + 37 (Qra) fexta (11)
Tmd.0 = MmGimdo + Dmlmd.o + FmeSgMGmdo) (12)
Tt£.0 = Tmao + N 1T (13)

TWO-STAGE ILC SCHEME

To deal with the MIMO mismatched dynamic system de-
scribed above, the hybrid two-stage ILC scheme proposddin [
is adopted here with the specific consideration of the asdume
sensor configuration.

ILC Basics
Consider the MIMO linear system with the error dynamics
and the ILC law in the following form

(14)
(15)

&(j) = —Peu(@Uk(j) +1(J)
Ukr1(]) = Q(2) [Uk() +L(2)&())]

whereeis the error that the ILC scheme aims to reducés
the lumped repetitive reference and/or disturbance inpulhée
system, andi is the control input updated iteratively by the ILC
scheme using the filtetgz) andQ(z). —Peyis the corresponding
transfer function from the control inputto the errore. Similar
to [1, 15], the following convergence property holds:

Theorem 1. The ILC syster(il4)-(15)is monotonically and ex-

ponentially convergent in the sense thak — Us|, — 0 and
€& — €|, — 0 as k— oo, if
B=1R@[I - L@Pu(2)]ll, <1 (16)



wheref3 is the rate of convergence, | is the identity matrix with
appropriate dimension, the p-norfie ||, = (3 | ei |P)1/p, and

17)
(18)

Proof. See [13] for details.

Given a fixedQ filter, the optimal learning filter to achieve
the fastest convergence is thus obtained from (16) as

L*(2) = afg[?zi)nllQ(Z) [ = L@Peu(@]l, (19)

This leads to the plant inversion choice, i.k*(z) = Py(2).
Equation (18) shows that the steady state esrovanishes with
complete learning (i.eQ(z) = 1), which means the effects @
from the repetitive input will be fully compensated. In prac-
tice, a zero-phase low-pass fili®(z) with unity DC gain is typ-
ically employed to prevent the effects of high frequencyarnc
tainties/noises from entering the learning process [1larter to
achieve better performance, it is desired to push the batidwi
of Q(2) as high as possible. Equation (16), however, indicates
that the bandwidth of(z) may have to be compromised to en-
sure monotonic convergence and to avoid poor transientsein t
learning process.

ILC with Reference Update

For robot applications, the ultimate objective is to redinee
load side (end-effector) tracking error. Here, to make tge-a
rithm more general, define the tracking erroreps® qq x — Gk.
When load side learning is desired and feasible with avigilab
information, the tracking error is thus = e/ £ Oed k — e ko
with the corresponding transfer functions denotedPas- Py,
and Py = Pyg. In contrast, if the load side information is not
available for learning, only motor side learning can be cateld
With € = €mk = Gmdk — dmk- Similarly, the corresponding trans-
fer functions would b&, = Pyny andPy = Byng. The dynamics of
the general tracking error can be derived from Fig. 1 as

- 'Srﬁ&PuSpA%qu,k +(In— PuSp'SJlA%l)Qd,k
— PuSpTni k + (PuSpyCRnd — Pa)dk
- F)eu.,rrq,k + I'_r,k

&

(20)

whereS, = (In +CPny) Lis the sensitivity function of the closed
loop system. The time indekand discrete-time operatarare
omitted hereafter for simplicity. From Theorem 1, the tiagk
performance of the next iteration can be improved with tHe fo
lowing reference update scheme using plant inversion ilegrn

filter

(21)
(22)

Fgk+1 = Qr(rqk +Lrex)

If the desired trajectoryg , the feedforward torque update
Tnik, and the disturbanad are repetitive for each iteration, the
monotonic convergence of this ILC scheme (21) can be guaran-
teed with the following condition

B = Q- R RSS Y, < 1 (23)
This implies that, in order to achieve fast convergencewte-

out compromising the bandwidth &}, it is desired to reduce
the model uncertainties. This can be done by either obtgiain
nominal modeP, more accurately representing the actual phys-
ical plantR,, or in contrast, making the inner plant (blue shaded
area in Fig. 1) behave as the chosen nominal mégleln the
next section, an ILC scheme with torque update is introduced
to achieve the latter objective, i.e., making— Puuy, Where

Uk = Tink + Trok iS the torque input to the inner plant.

ILC with Torque Update

Defineep = Jpk — Ok as the model following error between
the nominal plant output (i.egpk 2 Pupi, andP, = Py, or Pmy)
and the actual plant outpgg (i.e., g Or gmk). Thenep can be
derived as

— TuSpTnik — APSH(C + Pryid) (Gmak + k)
+ (APSpCPmd — Py)dk

— PeuuTnik +Tuk

€p,k
(24)

whereT, = B,CPnu+ Py, andAP = P, — B,
Based on Theorem 1, the ILC scheme to reduce this model
following errorey i is formulated as

(25)
(26)

Tni k1 = Qu (T + Li€pk)
'—3 = Pgu}u = %1Tu71 = PJl

Therefore, if the desired trajectoty,qk, the reference up-
daterqy, and the disturbanady remain the same for each itera-
tion, the torque ILC scheme (25) will be monotonically come
ing as long as

B =||Qu(lh—PP S, <1 (27)
Similarly, depending on the available error information fo

learning process, this ILC scheme can be either load side-lea

ing (i.€.,0k = Qr.x, Pu= Py, andPy = Pyg), or motor side learning



(i.e.,0k = Omk. Pu= Pmu, andPy = Ryg). In practice, the plant in-
version in (26) usually encounters numerical difficultycgrthe
relative order 0Py (s) or Pny(s) is 3 or 2. Thus it is more favor-
able to choosBy(s) = Pyy(s)s? or Py(s) = Pnu(s)s, both of which
have lower relative orders. The corresponding desirechiegr
information for this new choice d®, is the load side accelera-
tion g« or the motor side velocitgyk, which is available with
the assumed sensor configuration (i.e., end-effector exwrak-

ter and motor encoders). By similar derivation, the tordue |
scheme with these changes can still be obtained exactiathe s
as (25)-(26), and achieves the same objective, i.e., mahkeip-
ner plant behave as the chosen nominal model. Thus, in tkee pra
tical implementation such as the following experimentabtgt
these changes will be applied to the torque ILC scheme talavoi
numerical instability.

Hybrid Scheme for Two-Stage ILC

In general, for the closed loop system with a satisfactory
feedback controller, the sensitivity functi@ will behave as a
high-pass filter to mitigate the low frequency error. Theref
in the convergence condition (27), the low frequency model u
certainty is greatly suppressed By. This allowsQy to have
higher bandwidth without worrying about the low frequenay u
certainty. With the effects of the torque ILC, the inner pleuil
behave like the nominal model (i.ey — P.pi) up to the band-
width of Q. Within this frequency range, the convergence con-
dition of the reference ILC (23) is simplified to

B~ HQr ('n— (28)

%) <1

which allows to pusi®Q; to a higher bandwidth for better tracking
performance.

Note that the repetitive assumption has been used in the

error, e.g.

e
)/uk_max 0.2, min 6 m 1,1 (31a)
Vo1 | 1€ 1ll2
A

V= (1—0.8y,) -min (2- (31b)

)

with the initialization asy,, = 1, , = 0.2. The basic idea be-
hind is that once the model foIIowmg error is becoming sabl
€, k2

ll€pk-1ll2
haved as the nominal model or the torque ILC cannot make fur-

ther improvement), the torque ILC becomes less importadt an
the reference ILC can be further activated with a decregsgd
and an increasey .. In contrast, the torque ILC can take more
effects and make further improvement whenever the model fol
lowing error is still drastically changing from the previiter-
ation. In order for the torque ILC to perform better, the effe

of the reference ILC is accordingly attenuated with a desgda
yri,k. Furthermore, if the maximum tracking error is sufficiently
(CAE
"lleplles
Thus, the gainy is accordingly decreased. However, to main-
tain the basic convergence rate, the gdip for the torque ILC

is constrained to be withifd.2, 1] as indicated in (31).

Also it is understood that the nominal models used in two
ILC stages should match with each other for the hybrid scheme
to perform well. This means these two stages need to be both
load side learning or both motor side learning, but not leayn
on the two sides together, since the nominal behaviors af loa
side and motor side cannot be achieved simultaneously due to
the mismatched dynamics.

As discussed above, the proposed hybrid scheme is aimed

[CYS

(i.e., ~ 1, which means either the inner plant has be-

small (i.e. ~ 0), the reference ILC becomes less necessary.

derivation of the aforementioned two ILC schemes. Here, the to deal with this mismatched dynamics by improving the perfo

disturbancedy depends on the actual robot stateand is thus
not repetitive. This can be relaxed in practice as followsces
the robot basic performance should be already close tdaatis
tory, the tiny changes af around desired statg in each iter-
ation normally will not result in drastic change . However,
when these two ILC schemes are activated simultaneousdy, th
repetitive assumption will be no longer valid (i.ezx and 7y x
are not repetitive from one iteration to another). Therefan ad
hoc hybrid scheme is designed to reduce the adverse irgader
of the two ILC stages. Specifically, an iteration-varyingngia
applied to each ILC stage as follows

Tni k1 = Qu (Tnik + YokLi€pk) (29)
lgk+1= Qr(rqk+ ¥rxlre) (30)
wherey, k = diad(Yiy, - » i) andy k= diag(yy, -, ¥f})- The

two gainsy,,, andy  for thei-th joint can be tuned by trial and

mance bandwidth of the ILC without compromising the stabili

A simple one-joint robot example to illustrate the advaetagf
this hybrid two-stage ILC scheme over other schemes is demon
strated in [13].

ROBOT LOAD SIDE STATE ESTIMATION

Note that, in the above ILC scheme with load side learning,
the required load side joint information (i.g,x anddj x) cannot
be measured directly. Therefore, it is desired to retrieiein-
formation from the available sensing, i.e., by fusing theseed
end-effector acceleration with the motor encoder measemnésn
This estimation problem is addressed in this section bizind
the scheme developed in [7].

Robot Inverse Kinematics .
Basic Differential Kinematics Letve = [pf, o] €
R denotes the end-effector Cartesian velocity vector coingos



of the translational velocitpe and the angular velocitso, at the
accelerometer mounting point. The kinematic relation leetuv
the joint space and the Cartesian space can be described as

Ve =J(qr)qr (32)

Take the time derivative of both sides of (32), which gives

Ve = J(0¢) & + J(ar, GG (33)

whereAt is the sampling time. Then (36) can be relaxed into a
convex optimization problem for each time ste@as

8. 2
min (&) =3 qu —8Ge(j)][3 (38)
s.t. Ajdg(j) =b;j
whereAg,(j) = w also includes the accumulated ac-

celeration estimation error not compensated from pre\stess.

Note that the acceleration measured by the end-effector ac- The optimal load side joint acceleration estimate is thuaiokd

celerometer is only three-dimensional translational lecagon.
LetJd(qy) € R®"andJ(qr,§) € R¥*" denote the first three rows
of the Jacobian matrix](q,), and its time derivativeJ(qy,d,),
respectively. Then (33) can be rewritten as

J(a)Ge = Pe— J?Qe, ) = AG = (34)

which becomes a constraint for the successful load siddeaece
ation estimatey,.

Optimization Based Inverse Kinematics With the
robot dynamic model (2), the load side joint positigncan be
roughly estimated as

6 = (Dys+Ky)t {RJNAQm-l- DyN~dm

—N (Tm - I\7|méim - I:A)m(:'lm - FAmcsgr(CIm))} (35)

where gy, and gy, are obtained from motor encoder measure-

as

G(i) = AT (AJA]) Tbj+ [| = AT (AAT) A 8G(D) (39)

by = Be(j) —I(c (), a(i))a(i)  (40)

Practical Implementation Issues In practice, the ac-
celeration measuremerft, provided by the end-effector ac-
celerometer is the translational acceleration with addél grav-
ity effect expressed in the accelerometer coordinate frarnas,
the end-effector translational acceleratigniri the world coor-
dinates can be obtained as

Pe = Ra(dr)fa+9 (41)

ments, andy, can be either motor torque command or measured \here Ra(qy) is the rotation matrix of the accelerometer coor-

by motor current. The desired trajectagyq’is used instead of
dm in (35) as approximation. Furthermore, with Euler diffdren
ation ofdp, the rough estimate of the load side joint veloodigl,,
is obtained.
With ¢2 £ [§2dt, an optimization problem to estimate the
load side joint acceleration can be formulated as

minf(q,) =

H/Qédt— /qut
d

This optimization problem over the whole time series wouwdd b
impractical to solve. Instead, a point-wise optimizati@m de
performed for each time step to generate the sub-optimat sol
tion. For each time stefp, let

s.t. AC]g b (36)

i A . i
)= [ g, A=y ain @)
0 i=

dinate frame with respect to the world coordinate frame and
g= [0 0 —9.8]Tm/se8 is the gravity vector expressed in the
world coordinate frame.

Furthermore, since the measurements|oéndd, are not
available, the rough estimatg$ énd(ﬁg are used instead in (40)
and (41) to calculatd(qy), J(q,d)qr, andRa(q). These ad-
justments for the calculation are reasonable under thetfiatt
the tiny discrepancies between the actual motion and thghrou
estimates do not make much differences in the Jacobianaestri
and the orientation matrix.

Adaptive Kinematic Kalman Filter

With the load side rough approximations obtainedjan”
(35) andq, in (39) for each joint, the estimation problem for the
whole robot can be decoupled intokinematic Kalman filters
(KKF) running in parallel to better estimate the load sidmfjo
position and velocity. The discrete time kinematic modeltfe



Kalman filter is written as
a(j+1)] [1at] [g()) A2 4 .
[q£<i+1>] - [0 ! } [qiuﬂ *[ Al ]%@*WW

———— ———— —— (J)

x(j+1) A x(j) B
(42a)
207\ ae(j)
y(j) C 77)—’
= X(j+1) =Ax(j)+Bu(j)+w(j) (42c)
y(i) =Cx(j) +v(j) (42d)

with the assumption that<€ j < T whereT is the number of to-
tal time steps of the executing trajectoxfl) ~ Xy = A" (X1, P1),

w(j) ~W; = 4(0,Q), andv(j) ~Vj = .4 (0,R). Note that
a2(i) andd,(j) are only approximations instead of direct mea-
surements. Thus, to implement this KKF, it is critical toatet
mine the appropriate covariances (i@.andR) for the fictitious
noisesw andv.

In the ILC application, where off-line processing is avail-
able, expectation maximization (EM) algorithm [7, 16] bchea
maximum likelihood principle can be utilized to estimate tin-
knownsxi, P1, Q, andR as follows (see [7, 16] for more details):

1. E-step: run Kalman smoother with current best estimdtes o
)21, P, Q, andR.

2. M-step: updatey; P, Q, andR as in (43) using the acausal
estimations from Kalman smoother.

PL=Pyr

A L R
Q:T — 1122[()(” — A%}y —BUj)

X1 =Xq7

~ ~ T
- (Xjr — AXj_q7 — BUj_1) (43)

T T U
TR — AR g7 — Pij-ytA APy TA }

15 o

where ¢}; represents the conditional expectation egf)
given the information up to thieth time step.

3. Iterate from E-step until the increment of the expectieetli
lihood is within chosen threshold.

4. Useg, in (39) andg; ;i from the last Kalman smoother it-
eration as the required load side state information in ti@2 IL
scheme for load side learning.

~C%yr) (v(i) ~ Cxjr) "+ CPyrC|

EXPERIMENTAL STUDY
Test Setup

The proposed method is implemented on a 6-joint industrial
robot, FANUC M-16B/20, in Fig. 2. The robot is equipped with

End-
Effector

_—
Inertia

Figure 2. FANUC M-16iB Robot System

built-in motor encoders for each joint. An inertia sensongA
log Devices, ADIS16400) consisting of a 3-axial accelerome
ter and a 3-axial gyroscope is attached to the end-effectoes.
three-dimensional position measurement system, Compyesau
3D (repeatability of 0.02mm, accuracy of 0.15mm, resolutid
0.01mm), is utilized to measure the end-effector tool agmnt
(TCP) position as a ground truth for performance validatibme
sampling rates of all the sensor signals as well as the ireal-t
controller implemented through MATLAB xPC Target are set to
1kHz. System identifications are conducted for each indizid
joint at several different postures to obtain the nominalaiyic
parameters in the dynamic model (3).

Algorithm Setup

The zero-phase acausal low-pass filil€sand Q, are ob-
tained ax; (2) = Qu(2) = Q1(z 1)Q1(2), whereQ(z) is a diag-
onal matrix of low-pass filters with cut-off frequencies bag
or around the identified first elastic anti-resonant freqyeof
the corresponding joint in order to deal with the joint dlzist.
With this selection of)(z) andQy(2), the frequency responses
of By in (23) andf, in (27) using nominal values and load side
inertia variations among the workspace are checked toybréf
monotonic stability conditions.

To see the superiority of proposed methods (i.e., hybrid two
stage scheme versus single stage scheme, load side leaening
sus motor side learning), the tracking performances intpere
iments will be compared in the following four controller tegs
implemented for 10 iterations each

1. RefILC(L) Reference ILC only using load side learning, i.e.,
Pu(S) = Pu(s), Yk = 1, andy ¢ = 0.

2. TrqILC(L): Torque ILC only using load side learning, i.e.,
Pu( ) P/u( )52 ik = 0, rSmdyuk—

3. ReflLC(L)+TrqlLC(L)} Reference ILC plus torque ILC us-
ing load side learning, i.eB,(s) = Pyy(s) for reference ILC
andP,(s) = Py, () for torque ILC.y x andy, k are updated
asin (31).

4. ReflLC(M)+TrglLC(M} Reference ILC plus torque ILC us-
ing motor side learning, i.eRu(s) = Pnu(s) for reference
ILC andP;(s) = Pmu(s)sfor torque ILC.yx andy,x are up-
dated as in (31).
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Figure 3. Y-Z Plane TCP Position Estimation (Experiment)

Experimental Results

The testing TCP trajectory (Fig. 3) is a 10ctlOcm square
path on the Y-Z plane with fixed orientation, maximum velgcit
of 1m/sec, and maximum acceleration of 12.5n7seBesides
the reference trajectorReferenck Fig. 3 also shows the actual
trajectory CG3D) measured by CompuGauge and the estimated
trajectory by proposed methoKF-EM) or by motor encoder
measurements directliviotor). It is seen that th&KKF-EM esti-
mation performs much better than thetor setting by capturing
closer transient motion on the Y Axis and with much less affse
on the Z Axis.

Figure 4 and Fig. 5 show the iteration domain root-mean-
square (RMS) tracking errdrconvergence profiles, while Fig. 6
and Fig. 7 show the time domain error profiles of the initial ru
and the last runs of these controller settings.

It can be seen that th&eflLC(L)+TrgIlLC(L) setting
achieves the overall best performance in position tracking
vibration reduction, even though there is non-monotorao-r
sient around the 5-th and the 6-th iterations in the postioar
convergence due to the interference between the two IL@stag
TheRefILC(L)setting turns out to be unstable in the iteration do-
main without the help of torque ILC to reduce mismatched nhode
uncertainty. This implies that th@ filter bandwidth (i.e., learn-
ing ability) for theRefILC(L)setting needs to be further compro-
mised. TheTrgILC(L) setting looks monotonically convergent
but with quite limited improvement in error reductions (esp
cially for moving periods), since the torque ILC aims at mod-
eling matching for the inner plant rather than directly addes
the load side tracking error. THeflLC(M)+TrqILC(M)setting
does not perform well either, since motor side model can baly
used for motor side learning, while the load side (end-édfigc

1The Cartesian space error here is defined as the Euclideaanais
between the estimated position/acceleration and the lacteasured posi-
tion/acceleration.

«10° TCP Position RMS Error
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Figure 4. TCP Position RMS Error Comparisons in Iteration Domain
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Figure 5. IMU Acceleration RMS Error Comparisons in Iteration Domain
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Figure 6. TCP Position Error Comparisons in Time Domain (Initial Run
vs. the 10th Iteration of Four Controller Settings)

performance is not guaranteed and may be even degraded due to
the mismatched dynamics.

CONCLUSIONS
This paper proposed an iterative learning control scheme
with sensor fusion for the robots with mismatched dynamick a
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Figure 7. IMU Acceleration Error Comparisons in Time Domain (Initial
Run vs. the 10th Iteration of Four Controller Settings)

mismatched sensing. A hybrid model based ILC scheme was

applied to the robots with joint compliance for end-effegier-

formance enhancement. The scheme iteratively update@the r

erence trajectory and the feedforward torque input in astege

manner in order to achieve high bandwidth performance while

maintaining the robust convergence property. In order folém

ment the decentralized ILC scheme in joint space, a sensor fu
sion based load side state estimation method was developed t

retrieve the joint space information from the end-effectma-

surements. The resulting ILC scheme and the load side state e

timation method were validated through the experimentalyst

on a 6-DOF industrial robot. It has been shown that for the in-

terested end-effector position tracking and vibrationigaiion

performance, the proposed scheme showed the benefits of sens

fusion utilizing end-effector measurements for learningcess,

as well as the advantage of the hybrid two-stage ILC scheme
to deal with the mismatched dynamics. For future work, it is

worthwhile to further investigate the systematic way of hgb

two-stage ILC scheme synthesis, especially the optimah¢un

of the two learning gains in (31) for any given trajectory.
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