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ABSTRACT
The appropriate choice of sensing and how to obtain the de-

sired state information from available sensing for feedback or
learning process are essential for most control schemes, includ-
ing iterative learning control (ILC), to achieve their performance
objective. In the multi-joint robots with joint elasticity, the load
side joint space measurements are usually not available, even
though the load side (end-effector) performance is of ultimate
interest. This is termed as mismatched sensing problem. Fur-
thermore, the mismatched uncertainty and mismatched real-time
feedback signals in the robots with joint elasticity set further dif-
ficulty in achieving high performance. In this paper, a hybrid
two-stage model based iterative learning control (ILC) scheme is
proposed to deal with the mismatched dynamics. Also, to tackle
the mismatched sensing issue, a sensor fusion scheme is devel-
oped. An optimization based inverse differential kinematics al-
gorithm and decoupled adaptive kinematic Kalman filter (KKF)
are integrated to obtain load side joint space information from
the insufficient end-effector measurements. The proposed ILC
scheme together with the load side state estimation algorithm is
validated through the experimental study on a 6-DOF industrial
robot.

INTRODUCTION
In industrial applications, robot manipulators are often re-

quired to repeatedly perform a single task. If the robot repeata-
bility is good, the trajectory tracking error will become repetitive
from one run to another. In this case, a learning control scheme
can be utilized to compensate for the repeatable trajectorytrack-
ing errors [1, 2]. While many literatures have suggested various

∗THIS WORK WAS SUPPORTED BY FANUC LTD., JAPAN.

kinds of iterative learning control (ILC) schemes, one of the es-
sential factors for the algorithms to work effectively is tochoose
and obtain the appropriate error information for the learning pro-
cess.

For the robots with joint compliance, the load side (end-
effector) performance is of the ultimate interest, which can
hardly be guaranteed with motor side information alone [3, 4].
Some early work [5, 6] on this topic only considered the sin-
gle joint case or assumed availability of load side joint measure-
ments. In industrial robots, however, the load side joint encoders
are usually not available due to the cost and assembly issues. To
overcome this mismatched sensing problem, a low-cost MEMS
accelerometer can be easily adopted to measure the end-effector
vibration [7]. This provides the possibility of designing control
schemes to directly address the end-effector performance.

In decentralized multi-axis robot control, which is typically
utilized in industrial robots, load side joint space information is
preferred rather than the end-effector information. Thus,a fur-
ther study of sensor fusion for joint information estimation is
necessary. In [8, 9], this problem was investigated utilizing an
accelerometer (and a gyroscope) for each joint without the use
of motor encoders. The achieved accuracy was acceptable for
service robots where positioning tolerance is at the order of mil-
limeters. In [10, 11], the load side state estimation problem was
handled with extended Kalman filter (EKF) or particle filter (PF)
utilizing both the motor encoders and end-effector accelerome-
ter. The computation load, however, was nontrivial due to the
complex dynamic model and the EKF/PF algorithms. In [7], we
tackled the same problem using an optimization based inverse
differential kinematics algorithm and decoupled adaptivekine-
matic Kalman filter (KKF) for each joint. The method is com-
putationally easy and will be utilized in this paper to provide



desired load side state estimates.
Other difficulties due to the mismatched behaviors (includ-

ing dynamics and sensing) of the robots with joint elasticity
include: the disturbance affects the output in a different way
from the motor torque input, and the real-time feedback signals
are normally from the motor side only instead of the load side.
In [12], a model-based ILC approach was developed to learn
the error component beyond the first resonant frequency. How-
ever, this approach requires an accurate piecewise-linearmodel
to be identified and interpolated for each trajectory in advance,
which limits its application. In [13], we proposed a hybrid two-
stage model based ILC scheme, where the reference trajectory
and the feedforward torque input were both iteratively updated
to achieve high bandwidth performance while maintaining con-
vergence property. This scheme will be applied in this paperto
deal with the mismatched system dynamics in the robots with
joint elasticity.

This paper is organized as follows. The robot modeling and
control structure are described first, which is followed by the sys-
tematic design of the two-stage ILC scheme. A load side statees-
timation method is then introduced to retrieve the load sidejoint
information from the measured Cartesian space acceleration for
implementation of the ILC scheme in the joint space. Finally, the
experimental study of the proposed scheme is presented.

SYSTEM OVERVIEW
Consider ann-joint robot with gear compliance. The robot

is equipped with motor side encoders to provide direct mea-
surements of motor side joint positions and velocities for real-
time feedback. In addition, a three-dimensional accelerometer
is mounted at the robot end-effector to measure the end-effector
acceleration in Cartesian space. Note that, if the computing re-
source and the sensor configuration allow, the end-effectorsen-
sor can also be used online. This paper, however, will address
the conservative case where the end-effector sensor is for off-
line and training use only, which is usually preferred in industry
due to the cost saving and the limited real-time computational
power.

Robot Dynamic Model
Lagrangian Dynamics The dynamics of then-joint

robot with joint compliance can be formulated as [14]

Mℓ(qℓ)q̈ℓ+C(qℓ, q̇ℓ)q̇ℓ+G(qℓ)+Dℓq̇ℓ+Fℓcsgn(q̇ℓ) (1)

+ JT(qℓ) fext = KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

Mmq̈m+Dmq̇m+Fmcsgn(q̇m) = τm (2)

−N−1[KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)]

whereqℓ,qm ∈ R
n are the load side and the motor side posi-

tion vectors, respectively.τm ∈ R
n is the motor torque vector.

Mℓ(qℓ) ∈ R
n×n is the load side inertia matrix,C(qℓ, q̇ℓ) ∈ R

n×n

is the Coriolis and centrifugal force matrix, andG(qℓ) ∈ R
n is

the gravity vector.Mm, KJ, DJ, Dℓ, Dm, Fℓc, Fmc, andN ∈ R
n×n

are all diagonal matrices. The(i, i)-th elements of these matrices,
Mmi, KJi, DJi, Dℓi , Dmi, Fℓci, Fmci, andNi , represent the motor side
inertia, joint stiffness, joint damping, load side damping, motor
side damping, load side Coulomb friction, motor side Coulomb
friction, and gear ratio of thei-th joint, respectively. fext ∈ R

6

denotes the external force acting on the robot due to contactwith
the environment. The matrixJ(qℓ) ∈ R

6×n is the Jacobian ma-
trix mapping from the load side joint space to the end-effector
Cartesian space.

Decoupling Model Define the nominal load side in-
ertia matrix asMn = diag(Mn1,Mn2, · · · ,Mnn) ∈ R

n×n, where
Mni = Mℓ,ii (qℓ0), andMℓ,ii (qℓ0) is the(i, i)-th element of the in-
ertia matrixMℓ(qℓ0) at the home (or nominal) positionqℓ0. Mn

can be used to approximate the inertia matrixMℓ(qℓ). The off-
diagonal entries ofMℓ(qℓ) represent the coupling inertia between
the joints. Then, the robot dynamic model can be reformulated
as follows

Mmq̈m+Dmq̇m = τm−Fmcsgn(q̇m) (3a)

−N−1[KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)]

Mnq̈ℓ+Dℓq̇ℓ = dℓ(q) (3b)

+KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

where all the coupling and nonlinear terms, such as Corio-
lis force, gravity, Coulomb frictions, and external forces, are
grouped into a fictitious disturbance torquedℓ(q) ∈ R

n as

dℓ(q) =
[
MnM−1

ℓ (qℓ)− In
][

KJ
(
N−1qm−qℓ

)
+DJ

(
N−1q̇m− q̇ℓ

)

−Dℓq̇ℓ
]
−MnM−1

ℓ (qℓ)
[
C(qℓ, q̇ℓ)q̇ℓ

+G(qℓ)+Fℓcsgn(q̇ℓ)+ JT(qℓ) fext
]

(4)

whereq=
[
qT

m, qT
ℓ

]T
andIn is ann×n identity matrix.

Thus, the robot can be considered as a MIMO system with
2n inputs and 2n outputs as follows

qm( j) = Pmu(z)τm( j)+Pmd(z)d( j) (5a)

qℓ( j) = Pℓu(z)τm( j)+Pℓd(z)d( j) (5b)

where j is the time index,z is the one step time advance operator
in the discrete time domain, and the fictitious disturbance input
d( j) is defined as

d( j) = d(q( j)) =
[
−[Fmcsgn(q̇m( j))]T, [dℓ(q( j))]T

]T
(6)
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Figure 1. Robot Control Structure with Reference & Torque Update

The continuous time transfer functions from the inputs to the
outputs for thei-th joint can be derived from (3) as follows

Pi
mu(s) =

Mnis2+(DJi +Dℓi)s+KJi

MmiMnis4+ Jdis3+ Jkis2+KJi(Dmi+Dℓi/N2
i )s

Pi
ℓu(s) =

DJis+KJi

Ni
[
MmiMnis4+ Jdis3+ Jkis2+KJi(Dmi+Dℓi/N2

i )s
]

Pi
mdℓ(s) =

DJis+KJi

Ni
[
MmiMnis4+ Jdis3+ Jkis2+KJi(Dmi+Dℓi/N2

i )s
]

Pi
ℓdℓ(s) =

Mmis2+(DJi/N2
i +Dmi)s+KJi/N2

i

MmiMnis4+ Jdis3+ Jkis2+KJi(Dmi+Dℓi/N2
i )s

Pi
md(s) =

[
Pi

mu(s), Pi
mdℓ

(s)
]
, Pi

ℓd(s) =
[
Pi
ℓu(s), Pi

ℓdℓ
(s)
]

where the subscript/superscripti denotes the joint index, and

Jdi =Mmi(DJi +Dℓi)+Mni(
DJi

N2
i

+Dmi)

Jki =MmiKJi +
MniKJi

N2
i

+(DJi +Dℓi)Dmi+
DJiDℓi

N2
i

Robot Controller Structure
It is seen that the robot dynamic model (3) is in a decou-

pled form since all the variables are expressed in the diagonal
matrix form or vector form. Therefore, the robot controllercan
be implemented in a decentralized form for each individual joint.
Note that the MIMO linear system representation (5) is obtained
not through local linearization but by considering the fictitious
disturbanced as an input which includes the model uncertainties
and nonlinearities. The second component of the fictitious dis-
turbanced in (6) influences the output in a different way from
the motor torque inputτm. Thus this robot system is regarded
as a MIMO mismatched dynamic system. The compensation of
this fictitious disturbanced should be considered in the controller
design.

Figure 1 illustrates the control structure for this mismatched
system, where the subscriptk is the iteration index. It consists of
two feedforward controllers,F1 andF2, and one feedback con-
troller, C. Here,C can be any linear feedback controller such

as a decoupled PID controller to stabilize the system. The feed-
forward controllers,F1 andF2, are designed using the nominal
inverse model as

qmd,k( j) = P̂mu(z)P̂
−1
ℓu (z)qℓd,k( j), F1(z)qℓd,k( j) (7)

τln,k( j) = P̂−1
mu(z)

[
qmd,k( j)+ rq,k( j)

]
, F2(z)q̄md,k( j) (8)

where•̂ is the nominal model representation of•, and•d is the
desired output of•. rq,k andτnl,k are used as the additional refer-
ence and feedforward torque updates, which are generated itera-
tively by the two-stage ILC algorithm designed later, to compen-
sate for the effect of the fictitious disturbanced. The initializa-
tion of these two updates for the first experiment iteration (i.e.,
initial run) is designed as

rq,0 = NK̂−1
J (τ̂ℓd − M̂nq̈ℓd − D̂ℓq̇ℓd) (9)

τnl,0 = τ f f ,0− τ̂ln,0 (10)

where

τ̂ℓd = M̂ℓ(qℓd)q̈ℓd +Ĉ(qℓd, q̇ℓd)q̇ℓd + Ĝ(qℓd)+ D̂ℓq̇ℓd

+ F̂ℓcsgn(q̇ℓd)+ JT(qℓd) fext,d (11)

τ̂md,0 = M̂m ¯̈qmd,0+ D̂m ¯̇qmd,0+ F̂mcsgn( ¯̇qmd,0) (12)

τ f f ,0 = τ̂md,0+N−1τ̂ℓd (13)

TWO-STAGE ILC SCHEME
To deal with the MIMO mismatched dynamic system de-

scribed above, the hybrid two-stage ILC scheme proposed in [13]
is adopted here with the specific consideration of the assumed
sensor configuration.

ILC Basics
Consider the MIMO linear system with the error dynamics

and the ILC law in the following form

ēk( j) =−Peu(z)ūk( j)+ r̄( j) (14)

ūk+1( j) = Q(z) [ūk( j)+L(z)ēk( j)] (15)

where ē is the error that the ILC scheme aims to reduce, ¯r is
the lumped repetitive reference and/or disturbance input to the
system, and ¯u is the control input updated iteratively by the ILC
scheme using the filtersL(z) andQ(z). −Peu is the corresponding
transfer function from the control input ¯u to the error ¯e. Similar
to [1,15], the following convergence property holds:

Theorem 1. The ILC system(14)-(15) is monotonically and ex-
ponentially convergent in the sense that‖ūk− ū∞‖p → 0 and
‖ēk− ē∞‖p → 0 as k→ ∞, if

β = ‖Q(z) [I −L(z)Peu(z)]‖p < 1 (16)



whereβ is the rate of convergence, I is the identity matrix with
appropriate dimension, the p-norm‖ • ‖p = (∑i | •i |

p)1/p, and

ū∞( j) = [I −Q(z)+Q(z)L(z)Peu(z)]
−1Q(z)L(z)r̄( j) (17)

ē∞( j) = [I −Q(z)+Q(z)L(z)Peu(z)]
−1 [I −Q(z)] r̄( j) (18)

Proof. See [13] for details.

Given a fixedQ filter, the optimal learning filter to achieve
the fastest convergence is thus obtained from (16) as

L∗(z) = argmin
L(z)

‖Q(z) [I −L(z)Peu(z)]‖p (19)

This leads to the plant inversion choice, i.e.,L∗(z) = P−1
eu (z).

Equation (18) shows that the steady state error ¯e∞ vanishes with
complete learning (i.e.,Q(z) = I ), which means the effects on ¯e∞
from the repetitive input ¯r will be fully compensated. In prac-
tice, a zero-phase low-pass filterQ(z) with unity DC gain is typ-
ically employed to prevent the effects of high frequency uncer-
tainties/noises from entering the learning process [1]. Inorder to
achieve better performance, it is desired to push the bandwidth
of Q(z) as high as possible. Equation (16), however, indicates
that the bandwidth ofQ(z) may have to be compromised to en-
sure monotonic convergence and to avoid poor transients in the
learning process.

ILC with Reference Update
For robot applications, the ultimate objective is to reducethe

load side (end-effector) tracking error. Here, to make the algo-
rithm more general, define the tracking error asek , qd,k −qk.
When load side learning is desired and feasible with available
information, the tracking error is thusek = eℓ,k , qℓd,k − qℓ,k,
with the corresponding transfer functions denoted asPu = Pℓu
and Pd = Pℓd. In contrast, if the load side information is not
available for learning, only motor side learning can be conducted
with ek = em,k , qmd,k−qm,k. Similarly, the corresponding trans-
fer functions would bePu = Pmu andPd = Pmd. The dynamics of
the general tracking error can be derived from Fig. 1 as

ek = − P̂−1
muPuSpŜ−1

p rq,k+(In−PuSpP̂−1
u Ŝ−1

p )qd,k

−PuSpτnl,k+(PuSpCPmd−Pd)dk

, −Peu,rrq,k+ r̄r,k (20)

whereSp = (In+CPmu)
−1 is the sensitivity function of the closed

loop system. The time indexj and discrete-time operatorz are
omitted hereafter for simplicity. From Theorem 1, the tracking
performance of the next iteration can be improved with the fol-
lowing reference update scheme using plant inversion learning

filter

rq,k+1 = Qr(rq,k+L∗
r ek) (21)

L∗
r = P̂−1

eu,r = P̂−1
u P̂mu (22)

If the desired trajectoryqd,k, the feedforward torque update
τnl,k, and the disturbancedk are repetitive for each iteration, the
monotonic convergence of this ILC scheme (21) can be guaran-
teed with the following condition

β ∗
r =

∥
∥Qr(In− P̂−1

u PuSpŜ−1
p )
∥
∥

∞ < 1 (23)

This implies that, in order to achieve fast convergence ratewith-
out compromising the bandwidth ofQr , it is desired to reduce
the model uncertainties. This can be done by either obtaining a
nominal modelP̂u more accurately representing the actual phys-
ical plantPu, or in contrast, making the inner plant (blue shaded
area in Fig. 1) behave as the chosen nominal modelP̂u. In the
next section, an ILC scheme with torque update is introduced
to achieve the latter objective, i.e., makingqk → P̂uµk, where
µk = τln,k+ τ f b,k is the torque input to the inner plant.

ILC with Torque Update
Defineep,k , qp,k−qk as the model following error between

the nominal plant output (i.e.,qp,k , P̂uµk, andP̂u = P̂ℓu or P̂mu)
and the actual plant outputqk (i.e.,qℓk or qmk). Thenep,k can be
derived as

ep,k = −TuSpτnl,k−∆PSp(C+ P̂−1
mu)(qmd,k+ rq,k)

+ (∆PSpCPmd−Pd)dk

, −Peu,uτnl,k+ r̄u,k (24)

whereTu = P̂uCPmu+Pu, and∆P= Pu− P̂u

Based on Theorem 1, the ILC scheme to reduce this model
following errorep,k is formulated as

τnl,k+1 = Qu
(
τnl,k+L∗

uep,k
)

(25)

L∗
u = P̂−1

eu,u = Ŝ−1
p T̂−1

u = P̂−1
u (26)

Therefore, if the desired trajectoryqmd,k, the reference up-
daterq,k, and the disturbancedk remain the same for each itera-
tion, the torque ILC scheme (25) will be monotonically converg-
ing as long as

β ∗
u =

∥
∥Qu

(
In−PuP̂−1

u

)
Sp
∥
∥

∞ < 1 (27)

Similarly, depending on the available error information for
learning process, this ILC scheme can be either load side learn-
ing (i.e.,qk = qℓ,k, Pu =Pℓu, andPd =Pℓd), or motor side learning



(i.e.,qk = qm,k, Pu =Pmu, andPd = Pmd). In practice, the plant in-
version in (26) usually encounters numerical difficulty since the
relative order ofPℓu(s) or Pmu(s) is 3 or 2. Thus it is more favor-
able to choosePu(s) =Pℓu(s)s2 or Pu(s) =Pmu(s)s, both of which
have lower relative orders. The corresponding desired learning
information for this new choice ofPu is the load side accelera-
tion q̈ℓ,k or the motor side velocity ˙qm,k, which is available with
the assumed sensor configuration (i.e., end-effector accelerome-
ter and motor encoders). By similar derivation, the torque ILC
scheme with these changes can still be obtained exactly the same
as (25)-(26), and achieves the same objective, i.e., makingthe in-
ner plant behave as the chosen nominal model. Thus, in the prac-
tical implementation such as the following experimental study,
these changes will be applied to the torque ILC scheme to avoid
numerical instability.

Hybrid Scheme for Two-Stage ILC
In general, for the closed loop system with a satisfactory

feedback controller, the sensitivity functionSp will behave as a
high-pass filter to mitigate the low frequency error. Therefore,
in the convergence condition (27), the low frequency model un-
certainty is greatly suppressed bySp. This allowsQu to have
higher bandwidth without worrying about the low frequency un-
certainty. With the effects of the torque ILC, the inner plant will
behave like the nominal model (i.e.,qk → P̂uµk) up to the band-
width of Qu. Within this frequency range, the convergence con-
dition of the reference ILC (23) is simplified to

βr ≈
∥
∥Qr

(
In−SpŜ

−1
p

)∥
∥

∞ < 1 (28)

which allows to pushQr to a higher bandwidth for better tracking
performance.

Note that the repetitive assumption has been used in the
derivation of the aforementioned two ILC schemes. Here, the
disturbancedk depends on the actual robot stateq, and is thus
not repetitive. This can be relaxed in practice as follows: since
the robot basic performance should be already close to satisfac-
tory, the tiny changes ofq around desired stateqd in each iter-
ation normally will not result in drastic change indk. However,
when these two ILC schemes are activated simultaneously, the
repetitive assumption will be no longer valid (i.e.,rq,k andτnl,k

are not repetitive from one iteration to another). Therefore, an ad
hoc hybrid scheme is designed to reduce the adverse interference
of the two ILC stages. Specifically, an iteration-varying gain is
applied to each ILC stage as follows

τnl,k+1 = Qu
(
τnl,k+ γu,kL

∗
uep,k

)
(29)

rq,k+1 = Qr(rq,k+ γr,kL
∗
r ek) (30)

whereγu,k =diag(γ1
u,k, · · · ,γ

n
u,k) andγr,k = diag(γ1

r,k, · · · ,γ
n
r,k). The

two gainsγ i
u,k andγ i

r,k for the i-th joint can be tuned by trial and

error, e.g.

γ i
u,k = max

(

0.2,min

(

6

γ i
u,k−1

∣
∣
∣
∣
∣

‖ei
p,k‖2

‖ei
p,k−1‖2

−1

∣
∣
∣
∣
∣
,1

))

(31a)

γ i
r,k =

(
1−0.8γ i

u,k

)
·min

(

2 ·
‖ei

k‖∞

‖ei
0‖∞

,1

)

(31b)

with the initialization asγ i
u,0 = 1,γ i

r,0 = 0.2. The basic idea be-
hind is that once the model following error is becoming stable

(i.e.,
‖ei

p,k‖2

‖ei
p,k−1‖2

≈ 1, which means either the inner plant has be-

haved as the nominal model or the torque ILC cannot make fur-
ther improvement), the torque ILC becomes less important and
the reference ILC can be further activated with a decreasedγ i

u,k

and an increasedγ i
r,k. In contrast, the torque ILC can take more

effects and make further improvement whenever the model fol-
lowing error is still drastically changing from the previous iter-
ation. In order for the torque ILC to perform better, the effects
of the reference ILC is accordingly attenuated with a decreased
γ i
r,k. Furthermore, if the maximum tracking error is sufficiently

small (i.e.,
‖ei

k‖∞
‖ei

0‖∞
≈ 0), the reference ILC becomes less necessary.

Thus, the gainγ i
r,k is accordingly decreased. However, to main-

tain the basic convergence rate, the gainγ i
u,k for the torque ILC

is constrained to be within[0.2,1] as indicated in (31).
Also it is understood that the nominal models used in two

ILC stages should match with each other for the hybrid scheme
to perform well. This means these two stages need to be both
load side learning or both motor side learning, but not learning
on the two sides together, since the nominal behaviors of load
side and motor side cannot be achieved simultaneously due to
the mismatched dynamics.

As discussed above, the proposed hybrid scheme is aimed
to deal with this mismatched dynamics by improving the perfor-
mance bandwidth of the ILC without compromising the stability.
A simple one-joint robot example to illustrate the advantages of
this hybrid two-stage ILC scheme over other schemes is demon-
strated in [13].

ROBOT LOAD SIDE STATE ESTIMATION
Note that, in the above ILC scheme with load side learning,

the required load side joint information (i.e.,qℓ,k andq̈ℓ,k) cannot
be measured directly. Therefore, it is desired to retrieve this in-
formation from the available sensing, i.e., by fusing the measured
end-effector acceleration with the motor encoder measurements.
This estimation problem is addressed in this section by utilizing
the scheme developed in [7].

Robot Inverse Kinematics
Basic Differential Kinematics Let ve =

[
ṗT

e, ωT
e

]T
∈

R
6 denotes the end-effector Cartesian velocity vector composing



of the translational velocity ˙pe and the angular velocityωe at the
accelerometer mounting point. The kinematic relation between
the joint space and the Cartesian space can be described as

ve = J(qℓ)q̇ℓ (32)

Take the time derivative of both sides of (32), which gives

v̇e = J(qℓ)q̈ℓ+ J̇(qℓ, q̇ℓ)q̇ℓ (33)

Note that the acceleration measured by the end-effector ac-
celerometer is only three-dimensional translational acceleration.
Let J̄(qℓ)∈R

3×n and ¯̇J(qℓ, q̇ℓ) ∈R
3×n denote the first three rows

of the Jacobian matrix,J(qℓ), and its time derivative,̇J(qℓ, q̇ℓ),
respectively. Then (33) can be rewritten as

J̄(qℓ)q̈ℓ = p̈e−
¯̇J(qℓ, q̇ℓ)q̇ℓ ⇒ Ā ˆ̈qℓ = b̄ (34)

which becomes a constraint for the successful load side acceler-
ation estimatê̈qℓ.

Optimization Based Inverse Kinematics With the
robot dynamic model (2), the load side joint positionqℓ can be
roughly estimated as

q̂o
ℓ = (D̂Js+ K̂J)

−1
[

K̂JN−1qm+ D̂JN
−1q̇m

−N
(
τm− M̂m ˆ̈qm− D̂mq̇m− F̂mcsgn(q̇m)

)]

(35)

whereqm and q̇m are obtained from motor encoder measure-
ments, andτm can be either motor torque command or measured
by motor current. The desired trajectory ¨qmd is used instead of
ˆ̈qm in (35) as approximation. Furthermore, with Euler differenti-
ation of q̂o

ℓ , the rough estimate of the load side joint velocity,ˆ̇qo
ℓ ,

is obtained.
With ˆ̇qo

ℓ ,
∫

ˆ̈qo
ℓdt, an optimization problem to estimate the

load side joint acceleration can be formulated as

min
ˆ̈qℓ

f ( ˆ̈qℓ) =
1
2

∥
∥
∥
∥

∫

ˆ̈qℓdt−
∫

ˆ̈qo
ℓdt

∥
∥
∥
∥

2

2
s.t. Ā ˆ̈qℓ = b̄ (36)

This optimization problem over the whole time series would be
impractical to solve. Instead, a point-wise optimization can be
performed for each time step to generate the sub-optimal solu-
tion. For each time stept j , let

ˆ̇qo
ℓ( j) =

∫ t j

0
ˆ̈qo
ℓ(t)dt, ˆ̇qℓ( j) =

j

∑
i=0

ˆ̈qℓ(i)∆t (37)

where∆t is the sampling time. Then (36) can be relaxed into a
convex optimization problem for each time stept j as

min
ˆ̈qℓ( j)

f ( ˆ̈qℓ( j)) =
1
2

∥
∥ ˆ̈qℓ( j)−∆ ˆ̈qℓ( j)

∥
∥2

2 (38)

s.t.A j ˆ̈qℓ( j) = b j

where∆ ˆ̈qℓ( j) =
ˆ̇qo
ℓ ( j)− ˆ̇qℓ( j−1)

∆t also includes the accumulated ac-
celeration estimation error not compensated from previoussteps.
The optimal load side joint acceleration estimate is thus obtained
as

ˆ̈qℓ( j) = AT
j

(
A jA

T
j

)−1
b j +

[

I −AT
j

(
A jA

T
j

)−1
A j

]

∆ ˆ̈qℓ( j) (39)

where

A j = J̄(qℓ( j)), b j = p̈e( j)− ¯̇J(qℓ( j), q̇ℓ( j))q̇ℓ( j) (40)

Practical Implementation Issues In practice, the ac-
celeration measurementfa provided by the end-effector ac-
celerometer is the translational acceleration with additional grav-
ity effect expressed in the accelerometer coordinate frame. Thus,
the end-effector translational acceleration ¨pe in the world coor-
dinates can be obtained as

p̈e = Ra(qℓ) fa+g (41)

whereRa(qℓ) is the rotation matrix of the accelerometer coor-
dinate frame with respect to the world coordinate frame and
g =

[
0 0−9.8

]T
m/sec2 is the gravity vector expressed in the

world coordinate frame.
Furthermore, since the measurements ofqℓ and q̇ℓ are not

available, the rough estimates ˆqo
ℓ and ˆ̇qo

ℓ are used instead in (40)

and (41) to calculatēJ(qℓ), ¯̇J(qℓ, q̇ℓ)q̇ℓ, andRa(qℓ). These ad-
justments for the calculation are reasonable under the factthat
the tiny discrepancies between the actual motion and the rough
estimates do not make much differences in the Jacobian matrices
and the orientation matrix.

Adaptive Kinematic Kalman Filter
With the load side rough approximations obtained as ˆqo

ℓ in
(35) andˆ̈qℓ in (39) for each joint, the estimation problem for the
whole robot can be decoupled inton kinematic Kalman filters
(KKF) running in parallel to better estimate the load side joint
position and velocity. The discrete time kinematic model for the



Kalman filter is written as

[
qℓ( j +1)
q̇ℓ( j +1)

]

︸ ︷︷ ︸

x( j+1)

=

[
I ∆tI
0 I

]

︸ ︷︷ ︸

A

[
qℓ( j)
q̇ℓ( j)

]

︸ ︷︷ ︸

x( j)

+

[
1
2∆t2I
∆tI

]

︸ ︷︷ ︸

B

ˆ̈qℓ( j)
︸ ︷︷ ︸

u( j)

+w( j)

(42a)

q̂o
ℓ( j)
︸ ︷︷ ︸

y( j)

=
[
I 0
]

︸︷︷︸

C

[
qℓ( j)
q̇ℓ( j)

]

︸ ︷︷ ︸

x( j)

+v( j) (42b)

⇒ x( j +1) = Ax( j)+Bu( j)+w( j) (42c)

y( j) =Cx( j)+ v( j) (42d)

with the assumption that 1≤ j ≤ T whereT is the number of to-
tal time steps of the executing trajectory,x(1)∼ X1 =N (x̂1,P1),
w( j) ∼ Wj = N (0,Q), and v( j) ∼ Vj = N (0,R). Note that
q̂o
ℓ( j) and ˆ̈qℓ( j) are only approximations instead of direct mea-

surements. Thus, to implement this KKF, it is critical to deter-
mine the appropriate covariances (i.e.,Q andR) for the fictitious
noisesw andv.

In the ILC application, where off-line processing is avail-
able, expectation maximization (EM) algorithm [7,16] based on
maximum likelihood principle can be utilized to estimate the un-
knownsx̂1,P1,Q, andRas follows (see [7,16] for more details):

1. E-step: run Kalman smoother with current best estimates of
x̂1,P1,Q, andR.

2. M-step: update ˆx1,P1,Q, andR as in (43) using the acausal
estimations from Kalman smoother.

x̂1 =x̂1|T P̂1 = P1|T

Q̂=
1

T −1

T

∑
j=2

[(
x̂ j |T −Ax̂ j−1|T −Buj−1

)

·
(
x̂ j |T −Ax̂ j−1|T −Buj−1

)T
(43)

+Pj |T −APT
j , j−1|T −Pj , j−1|TAT +APj−1|TAT

]

R̂=
1
T

T

∑
j=1

[(
y( j)−Cx̂ j |T

)(
y( j)−Cx̂ j |T

)T
+CPj |TCT

]

where •̂ j |t represents the conditional expectation of•( j)
given the information up to thet-th time step.

3. Iterate from E-step until the increment of the expected like-
lihood is within chosen threshold.

4. Use ˆ̈qℓ in (39) and ˆqℓ, j |T from the last Kalman smoother it-
eration as the required load side state information in the ILC
scheme for load side learning.

EXPERIMENTAL STUDY
Test Setup

The proposed method is implemented on a 6-joint industrial
robot, FANUC M-16iB/20, in Fig. 2. The robot is equipped with

FANUC
M-16iB 
Robot

Inertia 
Sensor

End-
Effector

CompuGauge
3D 

Measurement 
System

X

Z
Y

O

Figure 2. FANUC M-16iB Robot System

built-in motor encoders for each joint. An inertia sensor (Ana-
log Devices, ADIS16400) consisting of a 3-axial accelerome-
ter and a 3-axial gyroscope is attached to the end-effector.The
three-dimensional position measurement system, CompuGauge
3D (repeatability of 0.02mm, accuracy of 0.15mm, resolution of
0.01mm), is utilized to measure the end-effector tool center point
(TCP) position as a ground truth for performance validation. The
sampling rates of all the sensor signals as well as the real-time
controller implemented through MATLAB xPC Target are set to
1kHz. System identifications are conducted for each individual
joint at several different postures to obtain the nominal dynamic
parameters in the dynamic model (3).

Algorithm Setup
The zero-phase acausal low-pass filtersQr andQu are ob-

tained asQr(z) = Qu(z) = Q1(z−1)Q1(z), whereQ1(z) is a diag-
onal matrix of low-pass filters with cut-off frequencies beyond
or around the identified first elastic anti-resonant frequency of
the corresponding joint in order to deal with the joint elasticity.
With this selection ofQr(z) andQu(z), the frequency responses
of βr in (23) andβu in (27) using nominal values and load side
inertia variations among the workspace are checked to verify the
monotonic stability conditions.

To see the superiority of proposed methods (i.e., hybrid two-
stage scheme versus single stage scheme, load side learningver-
sus motor side learning), the tracking performances in the exper-
iments will be compared in the following four controller settings
implemented for 10 iterations each

1. RefILC(L): Reference ILC only using load side learning, i.e.,
P̂u(s) = P̂ℓu(s), γr,k ≡ 1, andγu,k ≡ 0.

2. TrqILC(L): Torque ILC only using load side learning, i.e.,
P̂u(s) = P̂ℓu(s)s2, γr,k ≡ 0, andγu,k ≡ 1.

3. RefILC(L)+TrqILC(L): Reference ILC plus torque ILC us-
ing load side learning, i.e.,̂Pu(s) = P̂ℓu(s) for reference ILC
andP̂u(s) = P̂ℓu(s)s2 for torque ILC.γr,k andγu,k are updated
as in (31).

4. RefILC(M)+TrqILC(M): Reference ILC plus torque ILC us-
ing motor side learning, i.e.,̂Pu(s) = P̂mu(s) for reference
ILC andP̂u(s) = P̂mu(s)s for torque ILC.γr,k andγu,k are up-
dated as in (31).
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Figure 3. Y-Z Plane TCP Position Estimation (Experiment)

Experimental Results
The testing TCP trajectory (Fig. 3) is a 10cm× 10cm square

path on the Y-Z plane with fixed orientation, maximum velocity
of 1m/sec, and maximum acceleration of 12.5m/sec2. Besides
the reference trajectory (Reference), Fig. 3 also shows the actual
trajectory (CG3D) measured by CompuGauge and the estimated
trajectory by proposed method (KKF-EM) or by motor encoder
measurements directly (Motor). It is seen that theKKF-EM esti-
mation performs much better than theMotor setting by capturing
closer transient motion on the Y Axis and with much less offset
on the Z Axis.

Figure 4 and Fig. 5 show the iteration domain root-mean-
square (RMS) tracking error1 convergence profiles, while Fig. 6
and Fig. 7 show the time domain error profiles of the initial run
and the last runs of these controller settings.

It can be seen that theRefILC(L)+TrqILC(L) setting
achieves the overall best performance in position trackingand
vibration reduction, even though there is non-monotonic tran-
sient around the 5-th and the 6-th iterations in the positionerror
convergence due to the interference between the two ILC stages.
TheRefILC(L)setting turns out to be unstable in the iteration do-
main without the help of torque ILC to reduce mismatched model
uncertainty. This implies that theQ filter bandwidth (i.e., learn-
ing ability) for theRefILC(L)setting needs to be further compro-
mised. TheTrqILC(L) setting looks monotonically convergent
but with quite limited improvement in error reductions (espe-
cially for moving periods), since the torque ILC aims at mod-
eling matching for the inner plant rather than directly addresses
the load side tracking error. TheRefILC(M)+TrqILC(M)setting
does not perform well either, since motor side model can onlybe
used for motor side learning, while the load side (end-effector)

1The Cartesian space error here is defined as the Euclidean distance
between the estimated position/acceleration and the actual measured posi-
tion/acceleration.
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performance is not guaranteed and may be even degraded due to
the mismatched dynamics.

CONCLUSIONS
This paper proposed an iterative learning control scheme

with sensor fusion for the robots with mismatched dynamics and
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mismatched sensing. A hybrid model based ILC scheme was
applied to the robots with joint compliance for end-effector per-
formance enhancement. The scheme iteratively updated the ref-
erence trajectory and the feedforward torque input in a two-stage
manner in order to achieve high bandwidth performance while
maintaining the robust convergence property. In order to imple-
ment the decentralized ILC scheme in joint space, a sensor fu-
sion based load side state estimation method was developed to
retrieve the joint space information from the end-effectormea-
surements. The resulting ILC scheme and the load side state es-
timation method were validated through the experimental study
on a 6-DOF industrial robot. It has been shown that for the in-
terested end-effector position tracking and vibration mitigation
performance, the proposed scheme showed the benefits of sensor
fusion utilizing end-effector measurements for learning process,
as well as the advantage of the hybrid two-stage ILC scheme
to deal with the mismatched dynamics. For future work, it is
worthwhile to further investigate the systematic way of hybrid
two-stage ILC scheme synthesis, especially the optimal tuning
of the two learning gains in (31) for any given trajectory.

REFERENCES
[1] Bristow, D. A., and Tharayil, M., 2006. “A survey of

iterative learning control: A learning-based method for
high-performance tracking control”.IEEE Control Systems
Magazine(June), pp. 96–114.

[2] Arimoto, S., Kawamura, S., and Miyazaki, F., 1984. “Bet-
tering operation of Robots by learning”.Journal of Robotic
Systems,1(2), pp. 123–140.

[3] Chen, W., Kong, K., and Tomizuka, M., 2009. “Hybrid
Adaptive Friction Compensation of Indirect Drive Trains”.
In Proceedings of the 2009 ASME Dynamic Systems and
Control Conference (DSCC), Vol. 2, pp. 313–320.

[4] Wallén, J., Norrlof, M., and Gunnarsson, S., 2008. “Arm-
side evaluation of ILC applied to a six-degrees-of-freedom
industrial robot”. In Proceedings of the 17th IFAC World

Congress, pp. 13450–13455.
[5] Miyazaki, F., Kawamura, S., Matsumori, M., and Arimoto,

S., 1986. “Learning control scheme for a class of robot
systems with elasticity”. In Proceedings of the 25th IEEE
Conference on Decision and Control,, Vol. 25, pp. 74–79.

[6] Luca, A. D., and Ulivi, G., 1992. “Iterative Learning
Control of Robots with Elastic Joints”. In Proceedings
of IEEE International Conference on Robotic and Automa-
tion, Vol. 3, pp. 1920–1926.

[7] Chen, W., and Tomizuka, M., 2012. “Load Side State Es-
timation in Elastic Robots with End-effector Sensing”. In
Proceedings of the 2012 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (AIM).

[8] Quigley, M., Brewer, R., Soundararaj, S., Pradeep, V.,
Le, Q., and Ng, A., 2010. “Low-cost accelerometers for
robotic manipulator perception”. In the 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pp. 6168–6174.

[9] Cheng, P., and Oelmann, B., 2010. “Joint-Angle Measure-
ment Using Accelerometers and Gyroscopes A Survey”.
IEEE Transactions on Instrumentation and Measurement,
59(2), pp. 404–414.

[10] Henriksson, R., Norrlof, M., Moberg, S., Wernholt, E.,and
Schon, T., 2009. “Experimental comparison of observers
for tool position estimation of industrial robots”. In Pro-
ceedings of the 48th IEEE Conference on Decision and
Control (CDC), pp. 8065–8070.

[11] Axelsson, P., Karlsson, R., and Norrlöf, M., 2011. Bayesian
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Linköping University, SE-581 83 Linköping, Sweden, Oct.
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